對 $$$\lambda$$$ 求解 $$$\frac{\left(\lambda - 1\right) \left(10 \lambda + 1\right) \left(20 \lambda^{2} - 10 \lambda + 1\right)}{200} = 0$$$
您的輸入
對 $$$\lambda$$$ 求解方程 $$$\frac{\left(\lambda - 1\right) \left(10 \lambda + 1\right) \left(20 \lambda^{2} - 10 \lambda + 1\right)}{200} = 0$$$。
答案
實根
$$$\lambda = - \frac{1}{10} = -0.1$$$A
$$$\lambda = 1$$$A
$$$\lambda = \frac{1}{4} - \frac{\sqrt{5}}{20}\approx 0.138196601125011$$$A
$$$\lambda = \frac{\sqrt{5} + 5}{20}\approx 0.361803398874989$$$A
複數根
似乎沒有複數根。
Please try a new game Rotatly