展開 $$$\left(x + y\right)^{6}$$$

此計算器會求出 $$$\left(x + y\right)^{6}$$$ 的二項式展開式,並顯示解題步驟。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

展開 $$$\left(x + y\right)^{6}$$$

解答

展開式由下列公式給出:$$$\left(a + b\right)^{n} = \sum_{k=0}^{n} {\binom{n}{k}} a^{n - k} b^{k}$$$,其中 $$${\binom{n}{k}} = \frac{n!}{\left(n - k\right)! k!}$$$$$$n! = 1 \cdot 2 \cdot \ldots \cdot n$$$

我們有 $$$a = x$$$$$$b = y$$$$$$n = 6$$$

因此,$$$\left(x + y\right)^{6} = \sum_{k=0}^{6} {\binom{6}{k}} x^{6 - k} y^{k}$$$

現在,對 $$$k$$$$$$0$$$$$$6$$$ 的每個取值計算乘積。

$$$k = 0$$$: $$${\binom{6}{0}} x^{6 - 0} y^{0} = \frac{6!}{\left(6 - 0\right)! 0!} x^{6 - 0} y^{0} = x^{6}$$$

$$$k = 1$$$: $$${\binom{6}{1}} x^{6 - 1} y^{1} = \frac{6!}{\left(6 - 1\right)! 1!} x^{6 - 1} y^{1} = 6 x^{5} y$$$

$$$k = 2$$$: $$${\binom{6}{2}} x^{6 - 2} y^{2} = \frac{6!}{\left(6 - 2\right)! 2!} x^{6 - 2} y^{2} = 15 x^{4} y^{2}$$$

$$$k = 3$$$: $$${\binom{6}{3}} x^{6 - 3} y^{3} = \frac{6!}{\left(6 - 3\right)! 3!} x^{6 - 3} y^{3} = 20 x^{3} y^{3}$$$

$$$k = 4$$$: $$${\binom{6}{4}} x^{6 - 4} y^{4} = \frac{6!}{\left(6 - 4\right)! 4!} x^{6 - 4} y^{4} = 15 x^{2} y^{4}$$$

$$$k = 5$$$: $$${\binom{6}{5}} x^{6 - 5} y^{5} = \frac{6!}{\left(6 - 5\right)! 5!} x^{6 - 5} y^{5} = 6 x y^{5}$$$

$$$k = 6$$$: $$${\binom{6}{6}} x^{6 - 6} y^{6} = \frac{6!}{\left(6 - 6\right)! 6!} x^{6 - 6} y^{6} = y^{6}$$$

因此,$$$\left(x + y\right)^{6} = x^{6} + 6 x^{5} y + 15 x^{4} y^{2} + 20 x^{3} y^{3} + 15 x^{2} y^{4} + 6 x y^{5} + y^{6}$$$

答案

$$$\left(x + y\right)^{6} = x^{6} + 6 x^{5} y + 15 x^{4} y^{2} + 20 x^{3} y^{3} + 15 x^{2} y^{4} + 6 x y^{5} + y^{6}$$$A


Please try a new game Rotatly