展開 $$$\left(2 x - 3 y\right)^{7}$$$

此計算器會求出 $$$\left(2 x - 3 y\right)^{7}$$$ 的二項式展開式,並顯示解題步驟。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

展開 $$$\left(2 x - 3 y\right)^{7}$$$

解答

展開式由下列公式給出:$$$\left(a + b\right)^{n} = \sum_{k=0}^{n} {\binom{n}{k}} a^{n - k} b^{k}$$$,其中 $$${\binom{n}{k}} = \frac{n!}{\left(n - k\right)! k!}$$$$$$n! = 1 \cdot 2 \cdot \ldots \cdot n$$$

我們有 $$$a = 2 x$$$$$$b = - 3 y$$$$$$n = 7$$$

因此,$$$\left(2 x - 3 y\right)^{7} = \sum_{k=0}^{7} {\binom{7}{k}} \left(2 x\right)^{7 - k} \left(- 3 y\right)^{k}$$$

現在,對 $$$k$$$$$$0$$$$$$7$$$ 的每個取值計算乘積。

$$$k = 0$$$: $$${\binom{7}{0}} \left(2 x\right)^{7 - 0} \left(- 3 y\right)^{0} = \frac{7!}{\left(7 - 0\right)! 0!} \left(2 x\right)^{7 - 0} \left(- 3 y\right)^{0} = 128 x^{7}$$$

$$$k = 1$$$: $$${\binom{7}{1}} \left(2 x\right)^{7 - 1} \left(- 3 y\right)^{1} = \frac{7!}{\left(7 - 1\right)! 1!} \left(2 x\right)^{7 - 1} \left(- 3 y\right)^{1} = - 1344 x^{6} y$$$

$$$k = 2$$$: $$${\binom{7}{2}} \left(2 x\right)^{7 - 2} \left(- 3 y\right)^{2} = \frac{7!}{\left(7 - 2\right)! 2!} \left(2 x\right)^{7 - 2} \left(- 3 y\right)^{2} = 6048 x^{5} y^{2}$$$

$$$k = 3$$$: $$${\binom{7}{3}} \left(2 x\right)^{7 - 3} \left(- 3 y\right)^{3} = \frac{7!}{\left(7 - 3\right)! 3!} \left(2 x\right)^{7 - 3} \left(- 3 y\right)^{3} = - 15120 x^{4} y^{3}$$$

$$$k = 4$$$: $$${\binom{7}{4}} \left(2 x\right)^{7 - 4} \left(- 3 y\right)^{4} = \frac{7!}{\left(7 - 4\right)! 4!} \left(2 x\right)^{7 - 4} \left(- 3 y\right)^{4} = 22680 x^{3} y^{4}$$$

$$$k = 5$$$: $$${\binom{7}{5}} \left(2 x\right)^{7 - 5} \left(- 3 y\right)^{5} = \frac{7!}{\left(7 - 5\right)! 5!} \left(2 x\right)^{7 - 5} \left(- 3 y\right)^{5} = - 20412 x^{2} y^{5}$$$

$$$k = 6$$$: $$${\binom{7}{6}} \left(2 x\right)^{7 - 6} \left(- 3 y\right)^{6} = \frac{7!}{\left(7 - 6\right)! 6!} \left(2 x\right)^{7 - 6} \left(- 3 y\right)^{6} = 10206 x y^{6}$$$

$$$k = 7$$$: $$${\binom{7}{7}} \left(2 x\right)^{7 - 7} \left(- 3 y\right)^{7} = \frac{7!}{\left(7 - 7\right)! 7!} \left(2 x\right)^{7 - 7} \left(- 3 y\right)^{7} = - 2187 y^{7}$$$

因此,$$$\left(2 x - 3 y\right)^{7} = 128 x^{7} - 1344 x^{6} y + 6048 x^{5} y^{2} - 15120 x^{4} y^{3} + 22680 x^{3} y^{4} - 20412 x^{2} y^{5} + 10206 x y^{6} - 2187 y^{7}$$$

答案

$$$\left(2 x - 3 y\right)^{7} = 128 x^{7} - 1344 x^{6} y + 6048 x^{5} y^{2} - 15120 x^{4} y^{3} + 22680 x^{3} y^{4} - 20412 x^{2} y^{5} + 10206 x y^{6} - 2187 y^{7}$$$A


Please try a new game Rotatly