二次方程式計算器

逐步求解二次方程

此計算器會透過配方法或二次方程求根公式,逐步求解二次方程。它能找出實根與虛根(複數根)。

相關計算器: 判別式計算器

Enter a quadratic equation:

For example, x^2+4x+3=0 or x^2+4=5x.

Choose a method:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: solve the quadratic equation $$$x^{2} - 7 x + 13 = 0$$$ by using quadratic formula.

The standard quadratic equation has the form $$$ax^2+bx+c=0$$$.

In our case, $$$a=1$$$, $$$b=-7$$$, $$$c=13$$$.

Now, find the discriminant using the formula $$$D=b^2-4ac$$$: $$$D=\left(-7\right)^2-4\cdot 1 \cdot 13=-3$$$.

Since the discriminant is negative, there will be two complex roots. This means that the given quadratic equation has no real roots.

Find the roots of the equation using the formulas $$$x_1=\frac{-b-\sqrt{D}}{2a}$$$ and $$$x_2=\frac{-b+\sqrt{D}}{2a}$$$

$$$x_1=\frac{-\left(-7\right)-\sqrt{-3}}{2\cdot 1}=\frac{7}{2} - \frac{\sqrt{3} i}{2}$$$ and $$$x_2=\frac{-\left(-7\right)+\sqrt{-3}}{2\cdot 1}=\frac{7}{2} + \frac{\sqrt{3} i}{2}$$$

Answer: $$$x_1=\frac{7}{2} - \frac{\sqrt{3} i}{2}$$$; $$$x_2=\frac{7}{2} + \frac{\sqrt{3} i}{2}$$$


Please try a new game Rotatly