將 $$$x^{3} - 1$$$ 除以 $$$x - 2$$$
您的輸入
使用長除法求 $$$\frac{x^{3} - 1}{x - 2}$$$。
解答
請將題目寫成特殊格式(缺少的項以零係數表示):
$$$\begin{array}{r|r}\hline\\x-2&x^{3}+0 x^{2}+0 x-1\end{array}$$$
步驟 1
將被除式的首項除以除式的首項:$$$\frac{x^{3}}{x} = x^{2}$$$。
將計算結果寫在表格的上半部。
將其乘以除數:$$$x^{2} \left(x-2\right) = x^{3}- 2 x^{2}$$$。
從所得結果中減去被除數:$$$\left(x^{3}-1\right) - \left(x^{3}- 2 x^{2}\right) = 2 x^{2}-1$$$。
$$\begin{array}{r|rrrr:c}&{\color{BlueViolet}x^{2}}&&&&\\\hline\\{\color{Magenta}x}-2&{\color{BlueViolet}x^{3}}&+0 x^{2}&+0 x&-1&\frac{{\color{BlueViolet}x^{3}}}{{\color{Magenta}x}} = {\color{BlueViolet}x^{2}}\\&-\phantom{x^{3}}&&&&\\&x^{3}&- 2 x^{2}&&&{\color{BlueViolet}x^{2}} \left(x-2\right) = x^{3}- 2 x^{2}\\\hline\\&&2 x^{2}&+0 x&-1&\end{array}$$步驟 2
將所得餘式的首項除以除式的首項:$$$\frac{2 x^{2}}{x} = 2 x$$$
將計算結果寫在表格的上半部。
將其乘以除數:$$$2 x \left(x-2\right) = 2 x^{2}- 4 x$$$。
從所得結果中減去餘數:$$$\left(2 x^{2}-1\right) - \left(2 x^{2}- 4 x\right) = 4 x-1$$$。
$$\begin{array}{r|rrrr:c}&x^{2}&{\color{Red}+2 x}&&&\\\hline\\{\color{Magenta}x}-2&x^{3}&+0 x^{2}&+0 x&-1&\\&-\phantom{x^{3}}&&&&\\&x^{3}&- 2 x^{2}&&&\\\hline\\&&{\color{Red}2 x^{2}}&+0 x&-1&\frac{{\color{Red}2 x^{2}}}{{\color{Magenta}x}} = {\color{Red}2 x}\\&&-\phantom{2 x^{2}}&&&\\&&2 x^{2}&- 4 x&&{\color{Red}2 x} \left(x-2\right) = 2 x^{2}- 4 x\\\hline\\&&&4 x&-1&\end{array}$$步驟 3
將所得餘式的首項除以除式的首項:$$$\frac{4 x}{x} = 4$$$
將計算結果寫在表格的上半部。
將其乘以除數:$$$4 \left(x-2\right) = 4 x-8$$$。
從所得結果中減去餘數:$$$\left(4 x-1\right) - \left(4 x-8\right) = 7$$$。
$$\begin{array}{r|rrrr:c}&x^{2}&+2 x&{\color{OrangeRed}+4}&&\\\hline\\{\color{Magenta}x}-2&x^{3}&+0 x^{2}&+0 x&-1&\\&-\phantom{x^{3}}&&&&\\&x^{3}&- 2 x^{2}&&&\\\hline\\&&2 x^{2}&+0 x&-1&\\&&-\phantom{2 x^{2}}&&&\\&&2 x^{2}&- 4 x&&\\\hline\\&&&{\color{OrangeRed}4 x}&-1&\frac{{\color{OrangeRed}4 x}}{{\color{Magenta}x}} = {\color{OrangeRed}4}\\&&&-\phantom{4 x}&&\\&&&4 x&-8&{\color{OrangeRed}4} \left(x-2\right) = 4 x-8\\\hline\\&&&&7&\end{array}$$由於餘式的次數小於除式的次數,我們就完成了。
結果表再次顯示如下:
$$\begin{array}{r|rrrr:c}&{\color{BlueViolet}x^{2}}&{\color{Red}+2 x}&{\color{OrangeRed}+4}&&\text{提示}\\\hline\\{\color{Magenta}x}-2&{\color{BlueViolet}x^{3}}&+0 x^{2}&+0 x&-1&\frac{{\color{BlueViolet}x^{3}}}{{\color{Magenta}x}} = {\color{BlueViolet}x^{2}}\\&-\phantom{x^{3}}&&&&\\&x^{3}&- 2 x^{2}&&&{\color{BlueViolet}x^{2}} \left(x-2\right) = x^{3}- 2 x^{2}\\\hline\\&&{\color{Red}2 x^{2}}&+0 x&-1&\frac{{\color{Red}2 x^{2}}}{{\color{Magenta}x}} = {\color{Red}2 x}\\&&-\phantom{2 x^{2}}&&&\\&&2 x^{2}&- 4 x&&{\color{Red}2 x} \left(x-2\right) = 2 x^{2}- 4 x\\\hline\\&&&{\color{OrangeRed}4 x}&-1&\frac{{\color{OrangeRed}4 x}}{{\color{Magenta}x}} = {\color{OrangeRed}4}\\&&&-\phantom{4 x}&&\\&&&4 x&-8&{\color{OrangeRed}4} \left(x-2\right) = 4 x-8\\\hline\\&&&&7&\end{array}$$因此,$$$\frac{x^{3} - 1}{x - 2} = \left(x^{2} + 2 x + 4\right) + \frac{7}{x - 2}$$$。
答案
$$$\frac{x^{3} - 1}{x - 2} = \left(x^{2} + 2 x + 4\right) + \frac{7}{x - 2}$$$A