將 $$$x^{4}$$$ 除以 $$$x - 1$$$
您的輸入
使用長除法求 $$$\frac{x^{4}}{x - 1}$$$。
解答
請將題目寫成特殊格式(缺少的項以零係數表示):
$$$\begin{array}{r|r}\hline\\x-1&x^{4}+0 x^{3}+0 x^{2}+0 x+0\end{array}$$$
步驟 1
將被除式的首項除以除式的首項:$$$\frac{x^{4}}{x} = x^{3}$$$。
將計算結果寫在表格的上半部。
將其乘以除數:$$$x^{3} \left(x-1\right) = x^{4}- x^{3}$$$。
從所得結果中減去被除數:$$$\left(x^{4}\right) - \left(x^{4}- x^{3}\right) = x^{3}$$$。
$$\begin{array}{r|rrrrr:c}&{\color{Violet}x^{3}}&&&&&\\\hline\\{\color{Magenta}x}-1&{\color{Violet}x^{4}}&+0 x^{3}&+0 x^{2}&+0 x&+0&\frac{{\color{Violet}x^{4}}}{{\color{Magenta}x}} = {\color{Violet}x^{3}}\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&{\color{Violet}x^{3}} \left(x-1\right) = x^{4}- x^{3}\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\end{array}$$步驟 2
將所得餘式的首項除以除式的首項:$$$\frac{x^{3}}{x} = x^{2}$$$
將計算結果寫在表格的上半部。
將其乘以除數:$$$x^{2} \left(x-1\right) = x^{3}- x^{2}$$$。
從所得結果中減去餘數:$$$\left(x^{3}\right) - \left(x^{3}- x^{2}\right) = x^{2}$$$。
$$\begin{array}{r|rrrrr:c}&x^{3}&{\color{Chocolate}+x^{2}}&&&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&{\color{Chocolate}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{Chocolate}x^{3}}}{{\color{Magenta}x}} = {\color{Chocolate}x^{2}}\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&{\color{Chocolate}x^{2}} \left(x-1\right) = x^{3}- x^{2}\\\hline\\&&&x^{2}&+0 x&+0&\end{array}$$步驟 3
將所得餘式的首項除以除式的首項:$$$\frac{x^{2}}{x} = x$$$
將計算結果寫在表格的上半部。
將其乘以除數:$$$x \left(x-1\right) = x^{2}- x$$$。
從所得結果中減去餘數:$$$\left(x^{2}\right) - \left(x^{2}- x\right) = x$$$。
$$\begin{array}{r|rrrrr:c}&x^{3}&+x^{2}&{\color{SaddleBrown}+x}&&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&\\\hline\\&&&{\color{SaddleBrown}x^{2}}&+0 x&+0&\frac{{\color{SaddleBrown}x^{2}}}{{\color{Magenta}x}} = {\color{SaddleBrown}x}\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&{\color{SaddleBrown}x} \left(x-1\right) = x^{2}- x\\\hline\\&&&&x&+0&\end{array}$$步驟 4
將所得餘式的首項除以除式的首項:$$$\frac{x}{x} = 1$$$
將計算結果寫在表格的上半部。
將其乘以除數:$$$1 \left(x-1\right) = x-1$$$。
從所得結果中減去餘數:$$$\left(x\right) - \left(x-1\right) = 1$$$。
$$\begin{array}{r|rrrrr:c}&x^{3}&+x^{2}&+x&{\color{Fuchsia}+1}&&\\\hline\\{\color{Magenta}x}-1&x^{4}&+0 x^{3}&+0 x^{2}&+0 x&+0&\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&\\\hline\\&&x^{3}&+0 x^{2}&+0 x&+0&\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&\\\hline\\&&&x^{2}&+0 x&+0&\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&\\\hline\\&&&&{\color{Fuchsia}x}&+0&\frac{{\color{Fuchsia}x}}{{\color{Magenta}x}} = {\color{Fuchsia}1}\\&&&&-\phantom{x}&&\\&&&&x&-1&{\color{Fuchsia}1} \left(x-1\right) = x-1\\\hline\\&&&&&1&\end{array}$$由於餘式的次數小於除式的次數,我們就完成了。
結果表再次顯示如下:
$$\begin{array}{r|rrrrr:c}&{\color{Violet}x^{3}}&{\color{Chocolate}+x^{2}}&{\color{SaddleBrown}+x}&{\color{Fuchsia}+1}&&\text{提示}\\\hline\\{\color{Magenta}x}-1&{\color{Violet}x^{4}}&+0 x^{3}&+0 x^{2}&+0 x&+0&\frac{{\color{Violet}x^{4}}}{{\color{Magenta}x}} = {\color{Violet}x^{3}}\\&-\phantom{x^{4}}&&&&&\\&x^{4}&- x^{3}&&&&{\color{Violet}x^{3}} \left(x-1\right) = x^{4}- x^{3}\\\hline\\&&{\color{Chocolate}x^{3}}&+0 x^{2}&+0 x&+0&\frac{{\color{Chocolate}x^{3}}}{{\color{Magenta}x}} = {\color{Chocolate}x^{2}}\\&&-\phantom{x^{3}}&&&&\\&&x^{3}&- x^{2}&&&{\color{Chocolate}x^{2}} \left(x-1\right) = x^{3}- x^{2}\\\hline\\&&&{\color{SaddleBrown}x^{2}}&+0 x&+0&\frac{{\color{SaddleBrown}x^{2}}}{{\color{Magenta}x}} = {\color{SaddleBrown}x}\\&&&-\phantom{x^{2}}&&&\\&&&x^{2}&- x&&{\color{SaddleBrown}x} \left(x-1\right) = x^{2}- x\\\hline\\&&&&{\color{Fuchsia}x}&+0&\frac{{\color{Fuchsia}x}}{{\color{Magenta}x}} = {\color{Fuchsia}1}\\&&&&-\phantom{x}&&\\&&&&x&-1&{\color{Fuchsia}1} \left(x-1\right) = x-1\\\hline\\&&&&&1&\end{array}$$因此,$$$\frac{x^{4}}{x - 1} = \left(x^{3} + x^{2} + x + 1\right) + \frac{1}{x - 1}$$$。
答案
$$$\frac{x^{4}}{x - 1} = \left(x^{3} + x^{2} + x + 1\right) + \frac{1}{x - 1}$$$A