將 $$$x^{2}$$$ 除以 $$$1 - x^{2}$$$
您的輸入
使用長除法求 $$$\frac{x^{2}}{1 - x^{2}}$$$。
解答
請將題目寫成特殊格式(缺少的項以零係數表示):
$$$\begin{array}{r|r}\hline\\- x^{2}+1&x^{2}+0 x+0\end{array}$$$
步驟 1
將被除式的首項除以除式的首項:$$$\frac{x^{2}}{- x^{2}} = -1$$$。
將計算結果寫在表格的上半部。
將其乘以除數:$$$- \left(- x^{2}+1\right) = x^{2}-1$$$。
從所得結果中減去被除數:$$$\left(x^{2}\right) - \left(x^{2}-1\right) = 1$$$。
$$\begin{array}{r|rrr:c}&{\color{Red}-1}&&&\\\hline\\{\color{Magenta}- x^{2}}+1&{\color{Red}x^{2}}&+0 x&+0&\frac{{\color{Red}x^{2}}}{{\color{Magenta}- x^{2}}} = {\color{Red}-1}\\&-\phantom{x^{2}}&&&\\&x^{2}&+0 x&-1&{\color{Red}-1} \left(- x^{2}+1\right) = x^{2}-1\\\hline\\&&&1&\end{array}$$由於餘式的次數小於除式的次數,我們就完成了。
結果表再次顯示如下:
$$\begin{array}{r|rrr:c}&{\color{Red}-1}&&&\text{提示}\\\hline\\{\color{Magenta}- x^{2}}+1&{\color{Red}x^{2}}&+0 x&+0&\frac{{\color{Red}x^{2}}}{{\color{Magenta}- x^{2}}} = {\color{Red}-1}\\&-\phantom{x^{2}}&&&\\&x^{2}&+0 x&-1&{\color{Red}-1} \left(- x^{2}+1\right) = x^{2}-1\\\hline\\&&&1&\end{array}$$因此,$$$\frac{x^{2}}{1 - x^{2}} = -1 + \frac{1}{1 - x^{2}}$$$。
答案
$$$\frac{x^{2}}{1 - x^{2}} = -1 + \frac{1}{1 - x^{2}}$$$A
Please try a new game Rotatly