$$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$的模

该计算器将求出向量$$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$的模(长度、范数),并显示步骤。
$$$\langle$$$ $$$\rangle$$$
以逗号分隔。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\mathbf{\vec{u}} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$的模(长度)。

解答

向量的模由公式$$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$给出。

各坐标绝对值的平方和为 $$$\left|{\frac{\sqrt{2}}{2 \sqrt{t}}}\right|^{2} + \left|{e^{t}}\right|^{2} + \left|{- e^{- t}}\right|^{2} = e^{2 t} + \frac{1}{2 \left|{\sqrt{t}}\right|^{2}} + e^{- 2 t}$$$

因此,向量的模为 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{e^{2 t} + \frac{1}{2 \left|{\sqrt{t}}\right|^{2}} + e^{- 2 t}} = \sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}$$$

答案

模长为 $$$\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}} = \left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}$$$A


Please try a new game Rotatly