$$$\left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$的模
您的输入
求$$$\mathbf{\vec{u}} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$的模(长度)。
解答
向量的模由公式$$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$给出。
各坐标绝对值的平方和为 $$$\left|{4 \cos{\left(2 t \right)}}\right|^{2} + \left|{- 4 \sin{\left(2 t \right)}}\right|^{2} + \left|{-8}\right|^{2} = 16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64$$$。
因此,向量的模为 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64} = 4 \sqrt{5}$$$。
答案
模长为 $$$4 \sqrt{5}\approx 8.944271909999159$$$A。
Please try a new game Rotatly