$$$\left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$的模
您的输入
求$$$\mathbf{\vec{u}} = \left\langle - \frac{\sin{\left(t \right)}}{3}, - \frac{\cos{\left(t \right)}}{3}, 0\right\rangle$$$的模(长度)。
解答
向量的模由公式$$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$给出。
各坐标绝对值的平方和为 $$$\left|{- \frac{\sin{\left(t \right)}}{3}}\right|^{2} + \left|{- \frac{\cos{\left(t \right)}}{3}}\right|^{2} + \left|{0}\right|^{2} = \frac{\sin^{2}{\left(t \right)}}{9} + \frac{\cos^{2}{\left(t \right)}}{9}$$$。
因此,向量的模为 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{\sin^{2}{\left(t \right)}}{9} + \frac{\cos^{2}{\left(t \right)}}{9}} = \frac{1}{3}$$$。
答案
模长为 $$$\frac{1}{3}\approx 0.333333333333333$$$A。
Please try a new game Rotatly