沿$$$\left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$方向的单位向量
您的输入
求$$$\mathbf{\vec{u}} = \left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$方向的单位向量。
解答
向量的模长为 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{\sqrt{26 - 26 \cos{\left(4 t \right)}}}{4}$$$(步骤详见模长计算器)。
单位向量是通过将给定向量的每个分量除以其模得到的。
因此,单位向量为 $$$\mathbf{\vec{e}} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle$$$(步骤详见 向量数乘计算器)。
答案
在$$$\left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$A方向上的单位向量是$$$\left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle\approx \left\langle \frac{2.353393621658208 \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{\left(1 - \cos{\left(4 t \right)}\right)^{0.5}}, - \frac{2.353393621658208 \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{\left(1 - \cos{\left(4 t \right)}\right)^{0.5}}, \frac{0.784464540552736 \sin{\left(2 t \right)}}{\left(1 - \cos{\left(4 t \right)}\right)^{0.5}}\right\rangle$$$A。