化简 $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$

该计算器将化简布尔表达式 $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$,并显示步骤。

相关计算器: 真值表计算器

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

化简布尔表达式 $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$

解答

应用否定律 $$$\overline{0} = 1$$$

$$\left(\left(1 \cdot 0\right) + {\color{red}\left(\overline{0}\right)}\right) \cdot \left(\overline{1} + 0 + 1\right) = \left(\left(1 \cdot 0\right) + {\color{red}\left(1\right)}\right) \cdot \left(\overline{1} + 0 + 1\right)$$

应用否定律 $$$\overline{1} = 0$$$

$$\left(\left(1 \cdot 0\right) + 1\right) \cdot \left({\color{red}\left(\overline{1}\right)} + 0 + 1\right) = \left(\left(1 \cdot 0\right) + 1\right) \cdot \left({\color{red}\left(0\right)} + 0 + 1\right)$$

$$$x = 1 \cdot 0$$$ 应用支配(零化、湮灭)律 $$$x + 1 = 1$$$

$${\color{red}\left(\left(1 \cdot 0\right) + 1\right)} \cdot \left(0 + 0 + 1\right) = {\color{red}\left(1\right)} \cdot \left(0 + 0 + 1\right)$$

$$$x = 0$$$ 应用支配(零化、湮灭)律 $$$x + 1 = 1$$$

$$1 \cdot \left(0 + {\color{red}\left(0 + 1\right)}\right) = 1 \cdot \left(0 + {\color{red}\left(1\right)}\right)$$

$$$x = 0$$$ 应用支配(零化、湮灭)律 $$$x + 1 = 1$$$

$$1 \cdot {\color{red}\left(0 + 1\right)} = 1 \cdot {\color{red}\left(1\right)}$$

$$$x = 1$$$ 应用恒等律 $$$x \cdot 1 = x$$$

$${\color{red}\left(1 \cdot 1\right)} = {\color{red}\left(1\right)}$$

答案

$$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right) = 1$$$

析取范式为 $$$\text{True}$$$

合取范式为 $$$\text{True}$$$

NNF 为 $$$\text{True}$$$


Please try a new game Rotatly