朗斯基计算器

计算器将找到函数集的 Wronskian,并显示步骤。最多支持 5 种功能,2x2、3x3 等。

逗号分隔。

如果计算器没有计算出某些东西,或者您发现了错误,或者您有建议/反馈,请将其写在下面的评论中。

您的输入

$$$\left\{f_{1} = \cos{\left(x \right)}, f_{2} = \sin{\left(x \right)}, f_{3} = \sin{\left(2 x \right)}\right\}$$$的 Wronskian。

解决方案

Wronskian 由以下行列式给出: $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}f_{1}\left(x\right) & f_{2}\left(x\right) & f_{3}\left(x\right)\\f_{1}^{\prime}\left(x\right) & f_{2}^{\prime}\left(x\right) & f_{3}^{\prime}\left(x\right)\\f_{1}^{\prime\prime}\left(x\right) & f_{2}^{\prime\prime}\left(x\right) & f_{3}^{\prime\prime}\left(x\right)\end{array}\right|$$$

在我们的例子中, $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\\left(\cos{\left(x \right)}\right)^{\prime } & \left(\sin{\left(x \right)}\right)^{\prime } & \left(\sin{\left(2 x \right)}\right)^{\prime }\\\left(\cos{\left(x \right)}\right)^{\prime \prime } & \left(\sin{\left(x \right)}\right)^{\prime \prime } & \left(\sin{\left(2 x \right)}\right)^{\prime \prime }\end{array}\right|$$$

求导数(有关步骤,请参阅 导数计算器): $$$W{\left(f_{1},f_{2},f_{3} \right)}\left(x\right) = \left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\- \sin{\left(x \right)} & \cos{\left(x \right)} & 2 \cos{\left(2 x \right)}\\- \cos{\left(x \right)} & - \sin{\left(x \right)} & - 4 \sin{\left(2 x \right)}\end{array}\right|$$$

找到行列式(有关步骤,请参阅 行列式计算器): $$$\left|\begin{array}{ccc}\cos{\left(x \right)} & \sin{\left(x \right)} & \sin{\left(2 x \right)}\\- \sin{\left(x \right)} & \cos{\left(x \right)} & 2 \cos{\left(2 x \right)}\\- \cos{\left(x \right)} & - \sin{\left(x \right)} & - 4 \sin{\left(2 x \right)}\end{array}\right| = - 3 \sin{\left(2 x \right)}$$$

回答

Wronskian 等于$$$- 3 \sin{\left(2 x \right)}$$$A