$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$ 的主单位法向量
您的输入
求$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$的主单位法向量。
解答
为了找到主单位法向量,我们需要对单位切向量 $$$\mathbf{\vec{T}\left(t\right)}$$$ 求导,然后将其单位化(得到单位向量)。
求单位切向量:$$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$(步骤见单位切向量计算器)。
$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$(步骤参见导数计算器)。
求单位向量:$$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$(步骤详见 单位向量计算器)。
答案
主单位法向量为 $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$A。