偏导数计算器

分步计算偏导数

这个在线计算器将计算函数的偏导数,并显示步骤。您可以指定任意积分顺序。

Enter a function:

Enter the order of integration:

Hint: type x^2,y to calculate `(partial^3 f)/(partial x^2 partial y)`, or enter x,y^2,x to find `(partial^4 f)/(partial x partial y^2 partial x)`.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\frac{\partial}{\partial y}\left(e^{x y}\right)$$$

Write the function $$$e^{x y}$$$ as a composition of the two functions $$$u=g=x y$$$ and $$$f\left(u\right)=e^{u}$$$.

Apply the chain rule $$$\frac{\partial}{\partial y} \left(f\left(g\right) \right)=\frac{\partial}{\partial u} \left(f\left(u\right) \right) \cdot \frac{\partial}{\partial y} \left(g \right)$$$:

$${\color{red}{\frac{\partial}{\partial y}\left(e^{x y}\right)}}={\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right) \frac{\partial}{\partial y}\left(x y\right)}}$$

The derivative of an exponential is $$$\frac{\partial}{\partial u} \left(e^{u} \right)=e^{u}$$$:

$${\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right)}} \frac{\partial}{\partial y}\left(x y\right)={\color{red}{e^{u}}} \frac{\partial}{\partial y}\left(x y\right)$$

Return to the old variable:

$$e^{{\color{red}{u}}} \frac{\partial}{\partial y}\left(x y\right)=e^{{\color{red}{x y}}} \frac{\partial}{\partial y}\left(x y\right)$$

Apply the constant multiple rule $$$\frac{\partial}{\partial y} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial y} \left(f \right)$$$ with $$$c=x$$$ and $$$f=y$$$:

$$e^{x y} {\color{red}{\frac{\partial}{\partial y}\left(x y\right)}}=e^{x y} {\color{red}{x \frac{\partial}{\partial y}\left(y\right)}}$$

Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial y} \left(y \right)=1$$$:

$$x e^{x y} {\color{red}{\frac{\partial}{\partial y}\left(y\right)}}=x e^{x y} {\color{red}{1}}$$

Thus, $$$\frac{\partial}{\partial y}\left(e^{x y}\right)=x e^{x y}$$$

Answer: $$$\frac{\partial}{\partial y}\left(e^{x y}\right)=x e^{x y}$$$


Please try a new game Rotatly