$$$\left\{x = 3 e^{- 4 r} \sin{\left(3 \theta \right)}, y = e^{4 r} \cos{\left(3 \theta \right)}\right\}$$$ 的雅可比矩阵及其行列式

该计算器将求出函数组(或变换)$$$\left\{x = 3 e^{- 4 r} \sin{\left(3 \theta \right)}, y = e^{4 r} \cos{\left(3 \theta \right)}\right\}$$$ 的雅可比矩阵(及其行列式),并显示步骤。
以逗号分隔。
留空以自动检测,或指定变量,如 x,y(用逗号分隔)。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

计算$$$\left\{x = 3 e^{- 4 r} \sin{\left(3 \theta \right)}, y = e^{4 r} \cos{\left(3 \theta \right)}\right\}$$$的雅可比矩阵。

解答

雅可比矩阵定义如下:$$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta}\\\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right]$$$

在我们的情况下,$$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial}{\partial r} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) & \frac{\partial}{\partial \theta} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)\\\frac{\partial}{\partial r} \left(e^{4 r} \cos{\left(3 \theta \right)}\right) & \frac{\partial}{\partial \theta} \left(e^{4 r} \cos{\left(3 \theta \right)}\right)\end{array}\right]$$$

求导数(步骤详见导数计算器):$$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right]$$$

雅可比行列式是雅可比矩阵的行列式:$$$\left|\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right| = - 36 \cos{\left(6 \theta \right)}$$$(步骤见行列式计算器)。

答案

雅可比矩阵为 $$$\left[\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right]$$$A

雅可比行列式为 $$$- 36 \cos{\left(6 \theta \right)}$$$A


Please try a new game Rotatly