$$$x^{3}$$$ 的二阶导数

该计算器将求出$$$x^{3}$$$的二阶导数,并显示步骤。

相关计算器: 导数计算器, 对数求导法计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right)$$$

解答

求一阶导数 $$$\frac{d}{dx} \left(x^{3}\right)$$$

应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = 3$$$:

$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} = {\color{red}\left(3 x^{2}\right)}$$

因此,$$$\frac{d}{dx} \left(x^{3}\right) = 3 x^{2}$$$

接下来,$$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = \frac{d}{dx} \left(3 x^{2}\right)$$$

$$$c = 3$$$$$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(3 x^{2}\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(x^{2}\right)\right)}$$

应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = 2$$$:

$$3 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 3 {\color{red}\left(2 x\right)}$$

因此,$$$\frac{d}{dx} \left(3 x^{2}\right) = 6 x$$$

因此,$$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = 6 x$$$

答案

$$$\frac{d^{2}}{dx^{2}} \left(x^{3}\right) = 6 x$$$A


Please try a new game Rotatly