$$$32 + 4 \sqrt{17} i$$$ 的极坐标形式

该计算器将求出复数$$$32 + 4 \sqrt{17} i$$$的极坐标形式,并显示步骤。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$32 + 4 \sqrt{17} i$$$的极坐标形式。

解答

该复数的标准形式为 $$$32 + 4 \sqrt{17} i$$$

对于复数$$$a + b i$$$,其极坐标形式为$$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$,其中$$$r = \sqrt{a^{2} + b^{2}}$$$$$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$

我们有 $$$a = 32$$$$$$b = 4 \sqrt{17}$$$

因此,$$$r = \sqrt{32^{2} + \left(4 \sqrt{17}\right)^{2}} = 36$$$

此外,$$$\theta = \operatorname{atan}{\left(\frac{4 \sqrt{17}}{32} \right)} = \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}$$$

因此,$$$32 + 4 \sqrt{17} i = 36 \left(\cos{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)}\right)$$$

答案

$$$32 + 4 \sqrt{17} i = 36 \left(\cos{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)}\right) = 36 \left(\cos{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{\pi}\right)^{\circ} \right)} + i \sin{\left(\left(\frac{180 \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{\pi}\right)^{\circ} \right)}\right)$$$A


Please try a new game Rotatly