$$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$ 的极坐标形式

该计算器将求出复数$$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$的极坐标形式,并显示步骤。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$的极坐标形式。

解答

该复数的标准形式为 $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$

对于复数$$$a + b i$$$,其极坐标形式为$$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$,其中$$$r = \sqrt{a^{2} + b^{2}}$$$$$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$

我们有 $$$a = - \frac{1}{2}$$$$$$b = - \frac{\sqrt{3}}{2}$$$

因此,$$$r = \sqrt{\left(- \frac{1}{2}\right)^{2} + \left(- \frac{\sqrt{3}}{2}\right)^{2}} = 1$$$

此外,$$$\theta = \operatorname{atan}{\left(\frac{- \frac{\sqrt{3}}{2}}{- \frac{1}{2}} \right)} - \pi = - \frac{2 \pi}{3}$$$

因此,$$$- \frac{1}{2} - \frac{\sqrt{3} i}{2} = \cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}$$$

答案

$$$- \frac{1}{2} - \frac{\sqrt{3} i}{2} = \cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)} = \cos{\left(-120^{\circ} \right)} + i \sin{\left(-120^{\circ} \right)}$$$A


Please try a new game Rotatly