部分分式分解计算器
逐步求部分分式分解
此在线计算器将求出有理函数的部分分式分解,并显示步骤。
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{x^{3} - x}$$$
Factor the denominator: $$$\frac{1}{x^{3} - x}=\frac{1}{x \left(x - 1\right) \left(x + 1\right)}$$$
The form of the partial fraction decomposition is
$$\frac{1}{x \left(x - 1\right) \left(x + 1\right)}=\frac{A}{x}+\frac{B}{x + 1}+\frac{C}{x - 1}$$
Write the right-hand side as a single fraction:
$$\frac{1}{x \left(x - 1\right) \left(x + 1\right)}=\frac{x \left(x - 1\right) B + x \left(x + 1\right) C + \left(x - 1\right) \left(x + 1\right) A}{x \left(x - 1\right) \left(x + 1\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$1=x \left(x - 1\right) B + x \left(x + 1\right) C + \left(x - 1\right) \left(x + 1\right) A$$
Expand the right-hand side:
$$1=x^{2} A + x^{2} B + x^{2} C - x B + x C - A$$
Collect up the like terms:
$$1=x^{2} \left(A + B + C\right) + x \left(- B + C\right) - A$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B + C = 0\\- B + C = 0\\- A = 1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=-1$$$, $$$B=\frac{1}{2}$$$, $$$C=\frac{1}{2}$$$
Therefore,
$$\frac{1}{x \left(x - 1\right) \left(x + 1\right)}=\frac{-1}{x}+\frac{\frac{1}{2}}{x + 1}+\frac{\frac{1}{2}}{x - 1}$$
Answer: $$$\frac{1}{x^{3} - x}=\frac{-1}{x}+\frac{\frac{1}{2}}{x + 1}+\frac{\frac{1}{2}}{x - 1}$$$