部分分式分解计算器
逐步求部分分式分解
此在线计算器将求出有理函数的部分分式分解,并显示步骤。
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{x^{2} - 25}$$$
Factor the denominator: $$$\frac{1}{x^{2} - 25}=\frac{1}{\left(x - 5\right) \left(x + 5\right)}$$$
The form of the partial fraction decomposition is
$$\frac{1}{\left(x - 5\right) \left(x + 5\right)}=\frac{A}{x - 5}+\frac{B}{x + 5}$$
Write the right-hand side as a single fraction:
$$\frac{1}{\left(x - 5\right) \left(x + 5\right)}=\frac{\left(x - 5\right) B + \left(x + 5\right) A}{\left(x - 5\right) \left(x + 5\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$1=\left(x - 5\right) B + \left(x + 5\right) A$$
Expand the right-hand side:
$$1=x A + x B + 5 A - 5 B$$
Collect up the like terms:
$$1=x \left(A + B\right) + 5 A - 5 B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\5 A - 5 B = 1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=\frac{1}{10}$$$, $$$B=- \frac{1}{10}$$$
Therefore,
$$\frac{1}{\left(x - 5\right) \left(x + 5\right)}=\frac{\frac{1}{10}}{x - 5}+\frac{- \frac{1}{10}}{x + 5}$$
Answer: $$$\frac{1}{x^{2} - 25}=\frac{\frac{1}{10}}{x - 5}+\frac{- \frac{1}{10}}{x + 5}$$$