解方程 $$$6 x^{2} - 30 \sqrt{2} x + 67 = 0$$$,求$$$x$$$(实根)
您的输入
在区间$$$\left(-\infty, \infty\right)$$$上求解关于$$$x$$$的方程$$$6 x^{2} - 30 \sqrt{2} x + 67 = 0$$$。
答案
实根
$$$x = \frac{- 4 \sqrt{3} + 15 \sqrt{2}}{6}\approx 2.380833367553486$$$A
$$$x = \frac{4 \sqrt{3} + 15 \sqrt{2}}{6}\approx 4.690234444311989$$$A
Please try a new game Rotatly