$$$f{\left(x \right)} = - 3 x$$$$$$g{\left(x \right)} = 5 x - 6$$$的复合函数

该计算器将求出函数$$$f{\left(x \right)} = - 3 x$$$$$$g{\left(x \right)} = 5 x - 6$$$的复合函数,并显示步骤。

相关计算器: 函数运算计算器

可选。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$f{\left(x \right)} = - 3 x$$$$$$g{\left(x \right)} = 5 x - 6$$$的复合函数。

解答

$$$\left(f\circ g\right)\left(x\right) = f\left(g\left(x\right)\right) = f\left(5 x - 6\right) = - 3 {\color{red}\left(5 x - 6\right)} = 18 - 15 x$$$

$$$\left(g\circ f\right)\left(x\right) = g\left(f\left(x\right)\right) = g\left(- 3 x\right) = 5 {\color{red}\left(- 3 x\right)} - 6 = - 15 x - 6$$$

$$$\left(f\circ f\right)\left(x\right) = f\left(f\left(x\right)\right) = f\left(- 3 x\right) = - 3 {\color{red}\left(- 3 x\right)} = 9 x$$$

$$$\left(g\circ g\right)\left(x\right) = g\left(g\left(x\right)\right) = g\left(5 x - 6\right) = 5 {\color{red}\left(5 x - 6\right)} - 6 = 25 x - 36$$$

答案

$$$\left(f\circ g\right)\left(x\right) = 18 - 15 x$$$A

$$$\left(g\circ f\right)\left(x\right) = - 15 x - 6$$$A

$$$\left(f\circ f\right)\left(x\right) = 9 x$$$A

$$$\left(g\circ g\right)\left(x\right) = 25 x - 36$$$A


Please try a new game Rotatly