展开 $$$\left(2 x + 3\right)^{4}$$$
您的输入
展开 $$$\left(2 x + 3\right)^{4}$$$。
解答
该展开由以下公式给出:$$$\left(a + b\right)^{n} = \sum_{k=0}^{n} {\binom{n}{k}} a^{n - k} b^{k}$$$,其中$$${\binom{n}{k}} = \frac{n!}{\left(n - k\right)! k!}$$$和$$$n! = 1 \cdot 2 \cdot \ldots \cdot n$$$。
我们有$$$a = 2 x$$$、$$$b = 3$$$和$$$n = 4$$$。
因此,$$$\left(2 x + 3\right)^{4} = \sum_{k=0}^{4} {\binom{4}{k}} \left(2 x\right)^{4 - k} 3^{k}$$$。
现在,计算 $$$k$$$ 从 $$$0$$$ 到 $$$4$$$ 的每个取值对应的乘积。
$$$k = 0$$$: $$${\binom{4}{0}} \left(2 x\right)^{4 - 0} \cdot 3^{0} = \frac{4!}{\left(4 - 0\right)! 0!} \left(2 x\right)^{4 - 0} \cdot 3^{0} = 16 x^{4}$$$
$$$k = 1$$$: $$${\binom{4}{1}} \left(2 x\right)^{4 - 1} \cdot 3^{1} = \frac{4!}{\left(4 - 1\right)! 1!} \left(2 x\right)^{4 - 1} \cdot 3^{1} = 96 x^{3}$$$
$$$k = 2$$$: $$${\binom{4}{2}} \left(2 x\right)^{4 - 2} \cdot 3^{2} = \frac{4!}{\left(4 - 2\right)! 2!} \left(2 x\right)^{4 - 2} \cdot 3^{2} = 216 x^{2}$$$
$$$k = 3$$$: $$${\binom{4}{3}} \left(2 x\right)^{4 - 3} \cdot 3^{3} = \frac{4!}{\left(4 - 3\right)! 3!} \left(2 x\right)^{4 - 3} \cdot 3^{3} = 216 x$$$
$$$k = 4$$$: $$${\binom{4}{4}} \left(2 x\right)^{4 - 4} \cdot 3^{4} = \frac{4!}{\left(4 - 4\right)! 4!} \left(2 x\right)^{4 - 4} \cdot 3^{4} = 81$$$
因此,$$$\left(2 x + 3\right)^{4} = 16 x^{4} + 96 x^{3} + 216 x^{2} + 216 x + 81$$$。
答案
$$$\left(2 x + 3\right)^{4} = 16 x^{4} + 96 x^{3} + 216 x^{2} + 216 x + 81$$$A