$$$x^{3} - 2 x^{2}$$$ 除以 $$$x^{2} + 1$$$

该计算器将使用长除法将 $$$x^{3} - 2 x^{2}$$$ 除以 $$$x^{2} + 1$$$,并显示步骤。

相关计算器: 综合除法计算器, 长除法计算器

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

使用长除法计算$$$\frac{x^{3} - 2 x^{2}}{x^{2} + 1}$$$

解答

将题目写成特殊格式(缺失项写为零系数):

$$$\begin{array}{r|r}\hline\\x^{2}+1&x^{3}- 2 x^{2}+0 x+0\end{array}$$$

步骤 1

将被除式的首项除以除式的首项: $$$\frac{x^{3}}{x^{2}} = x$$$.

将计算结果写在表格的上部。

将其乘以除数:$$$x \left(x^{2}+1\right) = x^{3}+x$$$

从得到的结果中减去被除数:$$$\left(x^{3}- 2 x^{2}\right) - \left(x^{3}+x\right) = - 2 x^{2}- x$$$

$$\begin{array}{r|rrrr:c}&{\color{Red}x}&&&&\\\hline\\{\color{Magenta}x^{2}}+1&{\color{Red}x^{3}}&- 2 x^{2}&+0 x&+0&\frac{{\color{Red}x^{3}}}{{\color{Magenta}x^{2}}} = {\color{Red}x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&+x&&{\color{Red}x} \left(x^{2}+1\right) = x^{3}+x\\\hline\\&&- 2 x^{2}&- x&+0&\end{array}$$

步骤 2

将所得余式的首项除以除式的首项: $$$\frac{- 2 x^{2}}{x^{2}} = -2$$$

将计算结果写在表格的上部。

将其乘以除数:$$$- 2 \left(x^{2}+1\right) = - 2 x^{2}-2$$$

从得到的结果中减去余数:$$$\left(- 2 x^{2}- x\right) - \left(- 2 x^{2}-2\right) = - x+2$$$

$$\begin{array}{r|rrrr:c}&x&{\color{GoldenRod}-2}&&&\\\hline\\{\color{Magenta}x^{2}}+1&x^{3}&- 2 x^{2}&+0 x&+0&\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&+x&&\\\hline\\&&{\color{GoldenRod}- 2 x^{2}}&- x&+0&\frac{{\color{GoldenRod}- 2 x^{2}}}{{\color{Magenta}x^{2}}} = {\color{GoldenRod}-2}\\&&-\phantom{- 2 x^{2}}&&&\\&&- 2 x^{2}&+0 x&-2&{\color{GoldenRod}-2} \left(x^{2}+1\right) = - 2 x^{2}-2\\\hline\\&&&- x&+2&\end{array}$$

由于余式的次数小于除式的次数,故除法完成。

所得表格再次显示如下:

$$\begin{array}{r|rrrr:c}&{\color{Red}x}&{\color{GoldenRod}-2}&&&\text{提示}\\\hline\\{\color{Magenta}x^{2}}+1&{\color{Red}x^{3}}&- 2 x^{2}&+0 x&+0&\frac{{\color{Red}x^{3}}}{{\color{Magenta}x^{2}}} = {\color{Red}x}\\&-\phantom{x^{3}}&&&&\\&x^{3}&+0 x^{2}&+x&&{\color{Red}x} \left(x^{2}+1\right) = x^{3}+x\\\hline\\&&{\color{GoldenRod}- 2 x^{2}}&- x&+0&\frac{{\color{GoldenRod}- 2 x^{2}}}{{\color{Magenta}x^{2}}} = {\color{GoldenRod}-2}\\&&-\phantom{- 2 x^{2}}&&&\\&&- 2 x^{2}&+0 x&-2&{\color{GoldenRod}-2} \left(x^{2}+1\right) = - 2 x^{2}-2\\\hline\\&&&- x&+2&\end{array}$$

因此,$$$\frac{x^{3} - 2 x^{2}}{x^{2} + 1} = \left(x - 2\right) + \frac{2 - x}{x^{2} + 1}$$$

答案

$$$\frac{x^{3} - 2 x^{2}}{x^{2} + 1} = \left(x - 2\right) + \frac{2 - x}{x^{2} + 1}$$$A


Please try a new game Rotatly