将 $$$u^{7}$$$ 除以 $$$u^{2} + 1$$$
您的输入
使用长除法计算$$$\frac{u^{7}}{u^{2} + 1}$$$。
解答
将题目写成特殊格式(缺失项写为零系数):
$$$\begin{array}{r|r}\hline\\u^{2}+1&u^{7}+0 u^{6}+0 u^{5}+0 u^{4}+0 u^{3}+0 u^{2}+0 u+0\end{array}$$$
步骤 1
将被除式的首项除以除式的首项: $$$\frac{u^{7}}{u^{2}} = u^{5}$$$.
将计算结果写在表格的上部。
将其乘以除数:$$$u^{5} \left(u^{2}+1\right) = u^{7}+u^{5}$$$。
从得到的结果中减去被除数:$$$\left(u^{7}\right) - \left(u^{7}+u^{5}\right) = - u^{5}$$$
$$\begin{array}{r|rrrrrrrr:c}&{\color{GoldenRod}u^{5}}&&&&&&&&\\\hline\\{\color{Magenta}u^{2}}+1&{\color{GoldenRod}u^{7}}&+0 u^{6}&+0 u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\frac{{\color{GoldenRod}u^{7}}}{{\color{Magenta}u^{2}}} = {\color{GoldenRod}u^{5}}\\&-\phantom{u^{7}}&&&&&&&&\\&u^{7}&+0 u^{6}&+u^{5}&&&&&&{\color{GoldenRod}u^{5}} \left(u^{2}+1\right) = u^{7}+u^{5}\\\hline\\&&&- u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\end{array}$$步骤 2
将所得余式的首项除以除式的首项: $$$\frac{- u^{5}}{u^{2}} = - u^{3}$$$
将计算结果写在表格的上部。
将其乘以除数:$$$- u^{3} \left(u^{2}+1\right) = - u^{5}- u^{3}$$$。
从得到的结果中减去余数:$$$\left(- u^{5}\right) - \left(- u^{5}- u^{3}\right) = u^{3}$$$
$$\begin{array}{r|rrrrrrrr:c}&u^{5}&{\color{Chartreuse}- u^{3}}&&&&&&&\\\hline\\{\color{Magenta}u^{2}}+1&u^{7}&+0 u^{6}&+0 u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\\&-\phantom{u^{7}}&&&&&&&&\\&u^{7}&+0 u^{6}&+u^{5}&&&&&&\\\hline\\&&&{\color{Chartreuse}- u^{5}}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\frac{{\color{Chartreuse}- u^{5}}}{{\color{Magenta}u^{2}}} = {\color{Chartreuse}- u^{3}}\\&&&-\phantom{- u^{5}}&&&&&&\\&&&- u^{5}&+0 u^{4}&- u^{3}&&&&{\color{Chartreuse}- u^{3}} \left(u^{2}+1\right) = - u^{5}- u^{3}\\\hline\\&&&&&u^{3}&+0 u^{2}&+0 u&+0&\end{array}$$步骤 3
将所得余式的首项除以除式的首项: $$$\frac{u^{3}}{u^{2}} = u$$$
将计算结果写在表格的上部。
将其乘以除数:$$$u \left(u^{2}+1\right) = u^{3}+u$$$。
从得到的结果中减去余数:$$$\left(u^{3}\right) - \left(u^{3}+u\right) = - u$$$
$$\begin{array}{r|rrrrrrrr:c}&u^{5}&- u^{3}&{\color{Green}+u}&&&&&&\\\hline\\{\color{Magenta}u^{2}}+1&u^{7}&+0 u^{6}&+0 u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\\&-\phantom{u^{7}}&&&&&&&&\\&u^{7}&+0 u^{6}&+u^{5}&&&&&&\\\hline\\&&&- u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\\&&&-\phantom{- u^{5}}&&&&&&\\&&&- u^{5}&+0 u^{4}&- u^{3}&&&&\\\hline\\&&&&&{\color{Green}u^{3}}&+0 u^{2}&+0 u&+0&\frac{{\color{Green}u^{3}}}{{\color{Magenta}u^{2}}} = {\color{Green}u}\\&&&&&-\phantom{u^{3}}&&&&\\&&&&&u^{3}&+0 u^{2}&+u&&{\color{Green}u} \left(u^{2}+1\right) = u^{3}+u\\\hline\\&&&&&&&- u&+0&\end{array}$$由于余式的次数小于除式的次数,故除法完成。
所得表格再次显示如下:
$$\begin{array}{r|rrrrrrrr:c}&{\color{GoldenRod}u^{5}}&{\color{Chartreuse}- u^{3}}&{\color{Green}+u}&&&&&&\text{提示}\\\hline\\{\color{Magenta}u^{2}}+1&{\color{GoldenRod}u^{7}}&+0 u^{6}&+0 u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\frac{{\color{GoldenRod}u^{7}}}{{\color{Magenta}u^{2}}} = {\color{GoldenRod}u^{5}}\\&-\phantom{u^{7}}&&&&&&&&\\&u^{7}&+0 u^{6}&+u^{5}&&&&&&{\color{GoldenRod}u^{5}} \left(u^{2}+1\right) = u^{7}+u^{5}\\\hline\\&&&{\color{Chartreuse}- u^{5}}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\frac{{\color{Chartreuse}- u^{5}}}{{\color{Magenta}u^{2}}} = {\color{Chartreuse}- u^{3}}\\&&&-\phantom{- u^{5}}&&&&&&\\&&&- u^{5}&+0 u^{4}&- u^{3}&&&&{\color{Chartreuse}- u^{3}} \left(u^{2}+1\right) = - u^{5}- u^{3}\\\hline\\&&&&&{\color{Green}u^{3}}&+0 u^{2}&+0 u&+0&\frac{{\color{Green}u^{3}}}{{\color{Magenta}u^{2}}} = {\color{Green}u}\\&&&&&-\phantom{u^{3}}&&&&\\&&&&&u^{3}&+0 u^{2}&+u&&{\color{Green}u} \left(u^{2}+1\right) = u^{3}+u\\\hline\\&&&&&&&- u&+0&\end{array}$$因此,$$$\frac{u^{7}}{u^{2} + 1} = \left(u^{5} - u^{3} + u\right) + \frac{- u}{u^{2} + 1}$$$。
答案
$$$\frac{u^{7}}{u^{2} + 1} = \left(u^{5} - u^{3} + u\right) + \frac{- u}{u^{2} + 1}$$$A