将 $$$u^{3}$$$ 除以 $$$u^{2} + 1$$$
您的输入
使用长除法计算$$$\frac{u^{3}}{u^{2} + 1}$$$。
解答
将题目写成特殊格式(缺失项写为零系数):
$$$\begin{array}{r|r}\hline\\u^{2}+1&u^{3}+0 u^{2}+0 u+0\end{array}$$$
步骤 1
将被除式的首项除以除式的首项: $$$\frac{u^{3}}{u^{2}} = u$$$.
将计算结果写在表格的上部。
将其乘以除数:$$$u \left(u^{2}+1\right) = u^{3}+u$$$。
从得到的结果中减去被除数:$$$\left(u^{3}\right) - \left(u^{3}+u\right) = - u$$$
$$\begin{array}{r|rrrr:c}&{\color{Purple}u}&&&&\\\hline\\{\color{Magenta}u^{2}}+1&{\color{Purple}u^{3}}&+0 u^{2}&+0 u&+0&\frac{{\color{Purple}u^{3}}}{{\color{Magenta}u^{2}}} = {\color{Purple}u}\\&-\phantom{u^{3}}&&&&\\&u^{3}&+0 u^{2}&+u&&{\color{Purple}u} \left(u^{2}+1\right) = u^{3}+u\\\hline\\&&&- u&+0&\end{array}$$由于余式的次数小于除式的次数,故除法完成。
所得表格再次显示如下:
$$\begin{array}{r|rrrr:c}&{\color{Purple}u}&&&&\text{提示}\\\hline\\{\color{Magenta}u^{2}}+1&{\color{Purple}u^{3}}&+0 u^{2}&+0 u&+0&\frac{{\color{Purple}u^{3}}}{{\color{Magenta}u^{2}}} = {\color{Purple}u}\\&-\phantom{u^{3}}&&&&\\&u^{3}&+0 u^{2}&+u&&{\color{Purple}u} \left(u^{2}+1\right) = u^{3}+u\\\hline\\&&&- u&+0&\end{array}$$因此,$$$\frac{u^{3}}{u^{2} + 1} = u + \frac{- u}{u^{2} + 1}$$$。
答案
$$$\frac{u^{3}}{u^{2} + 1} = u + \frac{- u}{u^{2} + 1}$$$A
Please try a new game Rotatly