$$$x^{2}$$$ 除以 $$$\left(x - 1\right) \left(x + 1\right)$$$

该计算器将使用长除法将 $$$x^{2}$$$ 除以 $$$\left(x - 1\right) \left(x + 1\right)$$$,并显示步骤。

相关计算器: 综合除法计算器, 长除法计算器

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

使用长除法计算$$$\frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)}$$$

解答

将除数改写为:$$$\left(x - 1\right) \left(x + 1\right) = x^{2} - 1$$$

将题目写成特殊格式(缺失项写为零系数):

$$$\begin{array}{r|r}\hline\\x^{2}-1&x^{2}+0 x+0\end{array}$$$

步骤 1

将被除式的首项除以除式的首项: $$$\frac{x^{2}}{x^{2}} = 1$$$.

将计算结果写在表格的上部。

将其乘以除数:$$$1 \left(x^{2}-1\right) = x^{2}-1$$$

从得到的结果中减去被除数:$$$\left(x^{2}\right) - \left(x^{2}-1\right) = 1$$$

$$\begin{array}{r|rrr:c}&{\color{DarkBlue}1}&&&\\\hline\\{\color{Magenta}x^{2}}-1&{\color{DarkBlue}x^{2}}&+0 x&+0&\frac{{\color{DarkBlue}x^{2}}}{{\color{Magenta}x^{2}}} = {\color{DarkBlue}1}\\&-\phantom{x^{2}}&&&\\&x^{2}&+0 x&-1&{\color{DarkBlue}1} \left(x^{2}-1\right) = x^{2}-1\\\hline\\&&&1&\end{array}$$

由于余式的次数小于除式的次数,故除法完成。

所得表格再次显示如下:

$$\begin{array}{r|rrr:c}&{\color{DarkBlue}1}&&&\text{提示}\\\hline\\{\color{Magenta}x^{2}}-1&{\color{DarkBlue}x^{2}}&+0 x&+0&\frac{{\color{DarkBlue}x^{2}}}{{\color{Magenta}x^{2}}} = {\color{DarkBlue}1}\\&-\phantom{x^{2}}&&&\\&x^{2}&+0 x&-1&{\color{DarkBlue}1} \left(x^{2}-1\right) = x^{2}-1\\\hline\\&&&1&\end{array}$$

因此,$$$\frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)} = 1 + \frac{1}{\left(x - 1\right) \left(x + 1\right)}$$$

答案

$$$\frac{x^{2}}{\left(x - 1\right) \left(x + 1\right)} = 1 + \frac{1}{\left(x - 1\right) \left(x + 1\right)}$$$A


Please try a new game Rotatly