$$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$'nun büyüklüğü

Hesaplayıcı, adımları göstererek $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$ vektörünün büyüklüğünü (uzunluk, norm) bulacaktır.
$$$\langle$$$ $$$\rangle$$$
Virgülle ayrılmış.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

$$$\mathbf{\vec{u}} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$ vektörünün büyüklüğünü (uzunluğunu) bulun.

Çözüm

Bir vektörün büyüklüğü $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$ formülüyle verilir.

Koordinatların mutlak değerlerinin karelerinin toplamı $$$\left|{\frac{\sqrt{2}}{2 \sqrt{t}}}\right|^{2} + \left|{e^{t}}\right|^{2} + \left|{- e^{- t}}\right|^{2} = e^{2 t} + \frac{1}{2 \left|{\sqrt{t}}\right|^{2}} + e^{- 2 t}.$$$

Dolayısıyla, vektörün büyüklüğü $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{e^{2 t} + \frac{1}{2 \left|{\sqrt{t}}\right|^{2}} + e^{- 2 t}} = \sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}.$$$

Cevap

Büyüklük $$$\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}} = \left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}$$$A.


Please try a new game Rotatly