$$$\left\langle - 6 t, 2, 6 t^{2}\right\rangle$$$'nun büyüklüğü

Hesaplayıcı, adımları göstererek $$$\left\langle - 6 t, 2, 6 t^{2}\right\rangle$$$ vektörünün büyüklüğünü (uzunluk, norm) bulacaktır.
$$$\langle$$$ $$$\rangle$$$
Virgülle ayrılmış.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

$$$\mathbf{\vec{u}} = \left\langle - 6 t, 2, 6 t^{2}\right\rangle$$$ vektörünün büyüklüğünü (uzunluğunu) bulun.

Çözüm

Bir vektörün büyüklüğü $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$ formülüyle verilir.

Koordinatların mutlak değerlerinin karelerinin toplamı $$$\left|{- 6 t}\right|^{2} + \left|{2}\right|^{2} + \left|{6 t^{2}}\right|^{2} = 36 t^{4} + 36 t^{2} + 4$$$.

Dolayısıyla, vektörün büyüklüğü $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{36 t^{4} + 36 t^{2} + 4} = 2 \sqrt{9 t^{4} + 9 t^{2} + 1}$$$.

Cevap

Büyüklük $$$2 \sqrt{9 t^{4} + 9 t^{2} + 1} = 2 \left(9 t^{4} + 9 t^{2} + 1\right)^{0.5}$$$A.


Please try a new game Rotatly