$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$ için birim teğet vektörü

Hesaplayıcı, adımları gösterilerek $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$ için birim teğet vektörünü bulur.

İlgili hesaplayıcılar: Birim Normal Vektör Hesaplayıcısı, Birim Binormal Vektör Hesaplayıcısı

$$$\langle$$$ $$$\rangle$$$
Virgülle ayrılmış.
Belirli bir noktadaki vektöre ihtiyacınız yoksa boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$ için birim teğet vektörünü bulun.

Çözüm

Birim teğet vektörü bulmak için, teğet vektör olan $$$\mathbf{\vec{r}\left(t\right)}$$$'nin türevini bulmamız ve ardından onu birimleştirmemiz (birim vektörü elde etmemiz) gerekir.

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$ (adımlar için bkz. türev hesaplayıcı.)

Birim vektörü bulun: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle$$$ (adımlar için bkz. birim vektör hesaplayıcısı).

Cevap

Birim teğet vektör $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle.$$$A


Please try a new game Rotatly