$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$'nin torsiyonu

Hesaplayıcı, adımları göstererek $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$'nin burulmasını bulacaktır.

İlgili hesap makinesi: Eğrilik Hesaplayıcı

$$$\langle$$$
,
,
$$$\rangle$$$
Belirli bir noktadaki burulma değerine ihtiyacınız yoksa boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$'nin burulmasını bulun.

Çözüm

$$$\mathbf{\vec{r}\left(t\right)}$$$'nin türevini bulun: $$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 2 \cos{\left(2 t \right)}, - 2 \sin{\left(2 t \right)}, 1\right\rangle$$$ (adımlar için bkz. derivative calculator).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)}$$$'nin türevini bulun: $$$\mathbf{\vec{r}^{\prime\prime}\left(t\right)} = \left\langle - 4 \sin{\left(2 t \right)}, - 4 \cos{\left(2 t \right)}, 0\right\rangle$$$ (adımlar için bkz. derivative calculator).

Vektörel çarpımı bulun: $$$\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$ (adımlar için bkz. vektörel çarpım hesaplayıcı).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}$$$ vektörünün büyüklüğünü bulun: $$$\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right\rvert} = 4 \sqrt{5}$$$ (adımlar için bkz. büyüklük hesaplayıcısı).

$$$\mathbf{\vec{r}^{\prime\prime}\left(t\right)}$$$'nin türevini bulun: $$$\mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)} = \left\langle - 8 \cos{\left(2 t \right)}, 8 \sin{\left(2 t \right)}, 0\right\rangle$$$ (adımlar için bkz. derivative calculator).

Skaler çarpımı bulun: $$$\left(\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right)\cdot \mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)} = -32$$$ (adımlar için bkz. skaler çarpım hesaplayıcısı).

Son olarak, torsiyon $$$\tau\left(t\right) = \frac{\left(\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right)\cdot \mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)}}{\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right\rvert}^{2}} = - \frac{2}{5}.$$$

Cevap

Burulma $$$\tau\left(t\right) = - \frac{2}{5}$$$A.


Please try a new game Rotatly