$$$x \tan{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$x \tan{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int x \tan{\left(x \right)}\, dx$$$.

Çözüm

$$$\int{x \tan{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=\tan{\left(x \right)} dx$$$ olsun.

O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\tan{\left(x \right)} d x}=- \ln{\left(\cos{\left(x \right)} \right)}$$$ (adımlar için bkz. »).

Dolayısıyla,

$${\color{red}{\int{x \tan{\left(x \right)} d x}}}={\color{red}{\left(x \cdot \left(- \ln{\left(\cos{\left(x \right)} \right)}\right)-\int{\left(- \ln{\left(\cos{\left(x \right)} \right)}\right) \cdot 1 d x}\right)}}={\color{red}{\left(- x \ln{\left(\cos{\left(x \right)} \right)} - \int{\left(- \ln{\left(\cos{\left(x \right)} \right)}\right)d x}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-1$$$ ve $$$f{\left(x \right)} = \ln{\left(\cos{\left(x \right)} \right)}$$$ ile uygula:

$$- x \ln{\left(\cos{\left(x \right)} \right)} - {\color{red}{\int{\left(- \ln{\left(\cos{\left(x \right)} \right)}\right)d x}}} = - x \ln{\left(\cos{\left(x \right)} \right)} - {\color{red}{\left(- \int{\ln{\left(\cos{\left(x \right)} \right)} d x}\right)}}$$

Bu integralin kapalı formu yok:

$$- x \ln{\left(\cos{\left(x \right)} \right)} + {\color{red}{\int{\ln{\left(\cos{\left(x \right)} \right)} d x}}} = - x \ln{\left(\cos{\left(x \right)} \right)} + {\color{red}{\left(\frac{i x^{2}}{2} - x \ln{\left(e^{2 i x} + 1 \right)} + x \ln{\left(\cos{\left(x \right)} \right)} + \frac{i \operatorname{Li}_{2}\left(- e^{2 i x}\right)}{2}\right)}}$$

Dolayısıyla,

$$\int{x \tan{\left(x \right)} d x} = \frac{i x^{2}}{2} - x \ln{\left(e^{2 i x} + 1 \right)} + \frac{i \operatorname{Li}_{2}\left(- e^{2 i x}\right)}{2}$$

İntegrasyon sabitini ekleyin:

$$\int{x \tan{\left(x \right)} d x} = \frac{i x^{2}}{2} - x \ln{\left(e^{2 i x} + 1 \right)} + \frac{i \operatorname{Li}_{2}\left(- e^{2 i x}\right)}{2}+C$$

Cevap

$$$\int x \tan{\left(x \right)}\, dx = \left(\frac{i x^{2}}{2} - x \ln\left(e^{2 i x} + 1\right) + \frac{i \operatorname{Li}_{2}\left(- e^{2 i x}\right)}{2}\right) + C$$$A


Please try a new game Rotatly