$$$\frac{x^{2}}{7 - x^{3}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{x^{2}}{7 - x^{3}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{x^{2}}{7 - x^{3}}\, dx$$$.

Çözüm

$$$u=7 - x^{3}$$$ olsun.

Böylece $$$du=\left(7 - x^{3}\right)^{\prime }dx = - 3 x^{2} dx$$$ (adımlar » görülebilir) ve $$$x^{2} dx = - \frac{du}{3}$$$ elde ederiz.

İntegral şu hale gelir

$${\color{red}{\int{\frac{x^{2}}{7 - x^{3}} d x}}} = {\color{red}{\int{\left(- \frac{1}{3 u}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{1}{3}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:

$${\color{red}{\int{\left(- \frac{1}{3 u}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{u} d u}}{3}\right)}}$$

$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3} = - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$

Hatırlayın ki $$$u=7 - x^{3}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = - \frac{\ln{\left(\left|{{\color{red}{\left(7 - x^{3}\right)}}}\right| \right)}}{3}$$

Dolayısıyla,

$$\int{\frac{x^{2}}{7 - x^{3}} d x} = - \frac{\ln{\left(\left|{x^{3} - 7}\right| \right)}}{3}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{x^{2}}{7 - x^{3}} d x} = - \frac{\ln{\left(\left|{x^{3} - 7}\right| \right)}}{3}+C$$

Cevap

$$$\int \frac{x^{2}}{7 - x^{3}}\, dx = - \frac{\ln\left(\left|{x^{3} - 7}\right|\right)}{3} + C$$$A


Please try a new game Rotatly