$$$x^{2} e^{- \frac{x}{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int x^{2} e^{- \frac{x}{2}}\, dx$$$.
Çözüm
$$$\int{x^{2} e^{- \frac{x}{2}} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=x^{2}$$$ ve $$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$ (adımlar için bkz. »).
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{x^{2} e^{- \frac{x}{2}} d x}}}={\color{red}{\left(x^{2} \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- 2 x^{2} e^{- \frac{x}{2}} - \int{\left(- 4 x e^{- \frac{x}{2}}\right)d x}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-4$$$ ve $$$f{\left(x \right)} = x e^{- \frac{x}{2}}$$$ ile uygula:
$$- 2 x^{2} e^{- \frac{x}{2}} - {\color{red}{\int{\left(- 4 x e^{- \frac{x}{2}}\right)d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - {\color{red}{\left(- 4 \int{x e^{- \frac{x}{2}} d x}\right)}}$$
$$$\int{x e^{- \frac{x}{2}} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=x$$$ ve $$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$ olsun.
O halde $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$ (adımlar için bkz. »).
O halde,
$$- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\int{x e^{- \frac{x}{2}} d x}}}=- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\left(x \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 1 d x}\right)}}=- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\left(- 2 x e^{- \frac{x}{2}} - \int{\left(- 2 e^{- \frac{x}{2}}\right)d x}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=-2$$$ ve $$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$ ile uygula:
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 4 {\color{red}{\int{\left(- 2 e^{- \frac{x}{2}}\right)d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 4 {\color{red}{\left(- 2 \int{e^{- \frac{x}{2}} d x}\right)}}$$
$$$u=- \frac{x}{2}$$$ olsun.
Böylece $$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$ (adımlar » görülebilir) ve $$$dx = - 2 du$$$ elde ederiz.
O halde,
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{e^{- \frac{x}{2}} d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-2$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{\left(- 2 e^{u}\right)d u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}$$
Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 {\color{red}{\int{e^{u} d u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 {\color{red}{e^{u}}}$$
Hatırlayın ki $$$u=- \frac{x}{2}$$$:
$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{{\color{red}{u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{{\color{red}{\left(- \frac{x}{2}\right)}}}$$
Dolayısıyla,
$$\int{x^{2} e^{- \frac{x}{2}} d x} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{- \frac{x}{2}}$$
Sadeleştirin:
$$\int{x^{2} e^{- \frac{x}{2}} d x} = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}}$$
İntegrasyon sabitini ekleyin:
$$\int{x^{2} e^{- \frac{x}{2}} d x} = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}}+C$$
Cevap
$$$\int x^{2} e^{- \frac{x}{2}}\, dx = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}} + C$$$A