$$$\frac{x}{\sqrt{4 - 5 x}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{x}{\sqrt{4 - 5 x}}\, dx$$$.
Çözüm
$$$u=4 - 5 x$$$ olsun.
Böylece $$$du=\left(4 - 5 x\right)^{\prime }dx = - 5 dx$$$ (adımlar » görülebilir) ve $$$dx = - \frac{du}{5}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{\frac{x}{\sqrt{4 - 5 x}} d x}}} = {\color{red}{\int{\frac{u - 4}{25 \sqrt{u}} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{25}$$$ ve $$$f{\left(u \right)} = \frac{u - 4}{\sqrt{u}}$$$ ile uygula:
$${\color{red}{\int{\frac{u - 4}{25 \sqrt{u}} d u}}} = {\color{red}{\left(\frac{\int{\frac{u - 4}{\sqrt{u}} d u}}{25}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\frac{u - 4}{\sqrt{u}} d u}}}}{25} = \frac{{\color{red}{\int{\left(\sqrt{u} - \frac{4}{\sqrt{u}}\right)d u}}}}{25}$$
Her terimin integralini alın:
$$\frac{{\color{red}{\int{\left(\sqrt{u} - \frac{4}{\sqrt{u}}\right)d u}}}}{25} = \frac{{\color{red}{\left(- \int{\frac{4}{\sqrt{u}} d u} + \int{\sqrt{u} d u}\right)}}}{25}$$
Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=\frac{1}{2}$$$ ile uygulayın:
$$- \frac{\int{\frac{4}{\sqrt{u}} d u}}{25} + \frac{{\color{red}{\int{\sqrt{u} d u}}}}{25}=- \frac{\int{\frac{4}{\sqrt{u}} d u}}{25} + \frac{{\color{red}{\int{u^{\frac{1}{2}} d u}}}}{25}=- \frac{\int{\frac{4}{\sqrt{u}} d u}}{25} + \frac{{\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{25}=- \frac{\int{\frac{4}{\sqrt{u}} d u}}{25} + \frac{{\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}}{25}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=4$$$ ve $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$ ile uygula:
$$\frac{2 u^{\frac{3}{2}}}{75} - \frac{{\color{red}{\int{\frac{4}{\sqrt{u}} d u}}}}{25} = \frac{2 u^{\frac{3}{2}}}{75} - \frac{{\color{red}{\left(4 \int{\frac{1}{\sqrt{u}} d u}\right)}}}{25}$$
Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=- \frac{1}{2}$$$ ile uygulayın:
$$\frac{2 u^{\frac{3}{2}}}{75} - \frac{4 {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{25}=\frac{2 u^{\frac{3}{2}}}{75} - \frac{4 {\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{25}=\frac{2 u^{\frac{3}{2}}}{75} - \frac{4 {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{25}=\frac{2 u^{\frac{3}{2}}}{75} - \frac{4 {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{25}=\frac{2 u^{\frac{3}{2}}}{75} - \frac{4 {\color{red}{\left(2 \sqrt{u}\right)}}}{25}$$
Hatırlayın ki $$$u=4 - 5 x$$$:
$$- \frac{8 \sqrt{{\color{red}{u}}}}{25} + \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{75} = - \frac{8 \sqrt{{\color{red}{\left(4 - 5 x\right)}}}}{25} + \frac{2 {\color{red}{\left(4 - 5 x\right)}}^{\frac{3}{2}}}{75}$$
Dolayısıyla,
$$\int{\frac{x}{\sqrt{4 - 5 x}} d x} = \frac{2 \left(4 - 5 x\right)^{\frac{3}{2}}}{75} - \frac{8 \sqrt{4 - 5 x}}{25}$$
Sadeleştirin:
$$\int{\frac{x}{\sqrt{4 - 5 x}} d x} = \frac{2 \sqrt{4 - 5 x} \left(- 5 x - 8\right)}{75}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{x}{\sqrt{4 - 5 x}} d x} = \frac{2 \sqrt{4 - 5 x} \left(- 5 x - 8\right)}{75}+C$$
Cevap
$$$\int \frac{x}{\sqrt{4 - 5 x}}\, dx = \frac{2 \sqrt{4 - 5 x} \left(- 5 x - 8\right)}{75} + C$$$A