$$$\tan^{4}{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\tan^{4}{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \tan^{4}{\left(x \right)}\, dx$$$.

Çözüm

$$$u=\tan{\left(x \right)}$$$ olsun.

O halde $$$x=\operatorname{atan}{\left(u \right)}$$$ ve $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (adımlar » görülebilir).

Dolayısıyla,

$${\color{red}{\int{\tan^{4}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{4}}{u^{2} + 1} d u}}}$$

Payın derecesi paydanın derecesinden küçük olmadığından, polinom uzun bölmesi uygulayın (adımlar » görülebilir):

$${\color{red}{\int{\frac{u^{4}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(u^{2} - 1 + \frac{1}{u^{2} + 1}\right)d u}}}$$

Her terimin integralini alın:

$${\color{red}{\int{\left(u^{2} - 1 + \frac{1}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{u^{2} d u} + \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$\int{u^{2} d u} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{u^{2} d u} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$- u + \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{u^{2} d u}}}=- u + \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- u + \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

$$$\frac{1}{u^{2} + 1}$$$'nin integrali $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{u^{3}}{3} - u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = \frac{u^{3}}{3} - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Hatırlayın ki $$$u=\tan{\left(x \right)}$$$:

$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} + \frac{{\color{red}{u}}^{3}}{3} = \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} - {\color{red}{\tan{\left(x \right)}}} + \frac{{\color{red}{\tan{\left(x \right)}}}^{3}}{3}$$

Dolayısıyla,

$$\int{\tan^{4}{\left(x \right)} d x} = \frac{\tan^{3}{\left(x \right)}}{3} - \tan{\left(x \right)} + \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$

Sadeleştirin:

$$\int{\tan^{4}{\left(x \right)} d x} = x + \frac{\tan^{3}{\left(x \right)}}{3} - \tan{\left(x \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\tan^{4}{\left(x \right)} d x} = x + \frac{\tan^{3}{\left(x \right)}}{3} - \tan{\left(x \right)}+C$$

Cevap

$$$\int \tan^{4}{\left(x \right)}\, dx = \left(x + \frac{\tan^{3}{\left(x \right)}}{3} - \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly