$$$\frac{\sin{\left(x \right)}}{1 - \cos{\left(x \right)}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{\sin{\left(x \right)}}{1 - \cos{\left(x \right)}}\, dx$$$.
Çözüm
$$$u=1 - \cos{\left(x \right)}$$$ olsun.
Böylece $$$du=\left(1 - \cos{\left(x \right)}\right)^{\prime }dx = \sin{\left(x \right)} dx$$$ (adımlar » görülebilir) ve $$$\sin{\left(x \right)} dx = du$$$ elde ederiz.
İntegral şu hale gelir
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{1 - \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=1 - \cos{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(1 - \cos{\left(x \right)}\right)}}}\right| \right)}$$
Dolayısıyla,
$$\int{\frac{\sin{\left(x \right)}}{1 - \cos{\left(x \right)}} d x} = \ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{\sin{\left(x \right)}}{1 - \cos{\left(x \right)}} d x} = \ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}+C$$
Cevap
$$$\int \frac{\sin{\left(x \right)}}{1 - \cos{\left(x \right)}}\, dx = \ln\left(\left|{\cos{\left(x \right)} - 1}\right|\right) + C$$$A