$$$\sin{\left(x \right)} - \frac{1}{x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(\sin{\left(x \right)} - \frac{1}{x}\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(\sin{\left(x \right)} - \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
$$$\frac{1}{x}$$$'nin integrali $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{1}{x} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Sinüsün integrali $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \ln{\left(\left|{x}\right| \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \ln{\left(\left|{x}\right| \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Dolayısıyla,
$$\int{\left(\sin{\left(x \right)} - \frac{1}{x}\right)d x} = - \ln{\left(\left|{x}\right| \right)} - \cos{\left(x \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(\sin{\left(x \right)} - \frac{1}{x}\right)d x} = - \ln{\left(\left|{x}\right| \right)} - \cos{\left(x \right)}+C$$
Cevap
$$$\int \left(\sin{\left(x \right)} - \frac{1}{x}\right)\, dx = \left(- \ln\left(\left|{x}\right|\right) - \cos{\left(x \right)}\right) + C$$$A