$$$\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}\, dx$$$.

Çözüm

Kuvvet indirgeme formülü $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$'i $$$\alpha=x$$$ ile uygula:

$${\color{red}{\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x}}} = {\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{6} d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3}$$$ ile uygula:

$${\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{6} d x}}} = {\color{red}{\left(\frac{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3} d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\frac{\left(\cos{\left(2 x \right)} + 1\right) \sin{\left(x \right)}}{3} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} + \frac{\sin{\left(x \right)}}{3}\right)d x}}}}{2}$$

Her terimin integralini alın:

$$\frac{{\color{red}{\int{\left(\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} + \frac{\sin{\left(x \right)}}{3}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x} + \int{\frac{\sin{\left(x \right)}}{3} d x}\right)}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ ile uygula:

$$\frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{3} d x}}}}{2} = \frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{3}\right)}}}{2}$$

Sinüsün integrali $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{6} = \frac{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{6}$$

$$$\sin\left(x \right)\cos\left(2 x \right)$$$ ifadesini $$$\alpha=x$$$ ve $$$\beta=2 x$$$ ile $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ formülünü kullanarak yeniden yazın:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\frac{\sin{\left(x \right)} \cos{\left(2 x \right)}}{3} d x}}}}{2} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{6} + \frac{\sin{\left(3 x \right)}}{6}\right)d x}}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = - \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}$$$ ile uygula:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{6} + \frac{\sin{\left(3 x \right)}}{6}\right)d x}}}}{2} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\left(\frac{\int{\left(- \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}\right)d x}}{2}\right)}}}{2}$$

Her terimin integralini alın:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{3}\right)d x}}}}{4} = - \frac{\cos{\left(x \right)}}{6} + \frac{{\color{red}{\left(- \int{\frac{\sin{\left(x \right)}}{3} d x} + \int{\frac{\sin{\left(3 x \right)}}{3} d x}\right)}}}{4}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ ile uygula:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\int{\frac{\sin{\left(x \right)}}{3} d x}}}}{4} = - \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{3}\right)}}}{4}$$

Sinüsün integrali $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{12} = - \frac{\cos{\left(x \right)}}{6} + \frac{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}{4} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{12}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(x \right)} = \sin{\left(3 x \right)}$$$ ile uygula:

$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(3 x \right)}}{3} d x}}}}{4} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(3 x \right)} d x}}{3}\right)}}}{4}$$

$$$u=3 x$$$ olsun.

Böylece $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{3}$$$ elde ederiz.

O halde,

$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(3 x \right)} d x}}}}{12} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{12}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:

$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{3} d u}}}}{12} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{3}\right)}}}{12}$$

Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{36} = - \frac{\cos{\left(x \right)}}{12} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{36}$$

Hatırlayın ki $$$u=3 x$$$:

$$- \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left({\color{red}{u}} \right)}}{36} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left({\color{red}{\left(3 x\right)}} \right)}}{36}$$

Dolayısıyla,

$$\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3} d x} = - \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}+C$$

Cevap

$$$\int \frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{3}\, dx = \left(- \frac{\cos{\left(x \right)}}{12} - \frac{\cos{\left(3 x \right)}}{36}\right) + C$$$A


Please try a new game Rotatly