$$$\sec^{4}{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\sec^{4}{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \sec^{4}{\left(x \right)}\, dx$$$.

Çözüm

İki sekantı dışarı çıkarın ve kalan her şeyi tanjant cinsinden, $$$\alpha=x$$$ ile $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$ formülünü kullanarak yazın.:

$${\color{red}{\int{\sec^{4}{\left(x \right)} d x}}} = {\color{red}{\int{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)} d x}}}$$

$$$u=\tan{\left(x \right)}$$$ olsun.

Böylece $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (adımlar » görülebilir) ve $$$\sec^{2}{\left(x \right)} dx = du$$$ elde ederiz.

İntegral şu hale gelir

$${\color{red}{\int{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(u^{2} + 1\right)d u}}}$$

Her terimin integralini alın:

$${\color{red}{\int{\left(u^{2} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{u^{2} d u}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$\int{u^{2} d u} + {\color{red}{\int{1 d u}}} = \int{u^{2} d u} + {\color{red}{u}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$u + {\color{red}{\int{u^{2} d u}}}=u + {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u + {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Hatırlayın ki $$$u=\tan{\left(x \right)}$$$:

$${\color{red}{u}} + \frac{{\color{red}{u}}^{3}}{3} = {\color{red}{\tan{\left(x \right)}}} + \frac{{\color{red}{\tan{\left(x \right)}}}^{3}}{3}$$

Dolayısıyla,

$$\int{\sec^{4}{\left(x \right)} d x} = \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\sec^{4}{\left(x \right)} d x} = \frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}+C$$

Cevap

$$$\int \sec^{4}{\left(x \right)}\, dx = \left(\frac{\tan^{3}{\left(x \right)}}{3} + \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly