$$$x$$$ değişkenine göre $$$\frac{\ln\left(x\right)}{\ln\left(a\right)}$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{\ln\left(x\right)}{\ln\left(a\right)}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{\ln{\left(a \right)}}$$$ ve $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x}}} = {\color{red}{\frac{\int{\ln{\left(x \right)} d x}}{\ln{\left(a \right)}}}}$$
$$$\int{\ln{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.
$$$\operatorname{u}=\ln{\left(x \right)}$$$ ve $$$\operatorname{dv}=dx$$$ olsun.
O halde $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d x}=x$$$ (adımlar için bkz. »).
İntegral şu hale gelir
$$\frac{{\color{red}{\int{\ln{\left(x \right)} d x}}}}{\ln{\left(a \right)}}=\frac{{\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}}{\ln{\left(a \right)}}=\frac{{\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}}{\ln{\left(a \right)}}$$
$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$\frac{x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}}{\ln{\left(a \right)}} = \frac{x \ln{\left(x \right)} - {\color{red}{x}}}{\ln{\left(a \right)}}$$
Dolayısıyla,
$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \ln{\left(x \right)} - x}{\ln{\left(a \right)}}$$
Sadeleştirin:
$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(a \right)}}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{\ln{\left(x \right)}}{\ln{\left(a \right)}} d x} = \frac{x \left(\ln{\left(x \right)} - 1\right)}{\ln{\left(a \right)}}+C$$
Cevap
$$$\int \frac{\ln\left(x\right)}{\ln\left(a\right)}\, dx = \frac{x \left(\ln\left(x\right) - 1\right)}{\ln\left(a\right)} + C$$$A