$$$\ln\left(1 - x\right)$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\ln\left(1 - x\right)$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \ln\left(1 - x\right)\, dx$$$.

Çözüm

$$$u=1 - x$$$ olsun.

Böylece $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (adımlar » görülebilir) ve $$$dx = - du$$$ elde ederiz.

İntegral şu hale gelir

$${\color{red}{\int{\ln{\left(1 - x \right)} d x}}} = {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ ile uygula:

$${\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}$$

$$$\int{\ln{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$ kullanın.

$$$\operatorname{\mu}=\ln{\left(u \right)}$$$ ve $$$\operatorname{dv}=du$$$ olsun.

O halde $$$\operatorname{d\mu}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d u}=u$$$ (adımlar için bkz. »).

O halde,

$$- {\color{red}{\int{\ln{\left(u \right)} d u}}}=- {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=- {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$- u \ln{\left(u \right)} + {\color{red}{\int{1 d u}}} = - u \ln{\left(u \right)} + {\color{red}{u}}$$

Hatırlayın ki $$$u=1 - x$$$:

$${\color{red}{u}} - {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = {\color{red}{\left(1 - x\right)}} - {\color{red}{\left(1 - x\right)}} \ln{\left({\color{red}{\left(1 - x\right)}} \right)}$$

Dolayısıyla,

$$\int{\ln{\left(1 - x \right)} d x} = - x - \left(1 - x\right) \ln{\left(1 - x \right)} + 1$$

Sadeleştirin:

$$\int{\ln{\left(1 - x \right)} d x} = \left(x - 1\right) \left(\ln{\left(1 - x \right)} - 1\right)$$

İntegrasyon sabitini ekleyin:

$$\int{\ln{\left(1 - x \right)} d x} = \left(x - 1\right) \left(\ln{\left(1 - x \right)} - 1\right)+C$$

Cevap

$$$\int \ln\left(1 - x\right)\, dx = \left(x - 1\right) \left(\ln\left(1 - x\right) - 1\right) + C$$$A


Please try a new game Rotatly