$$$e^{\frac{x}{2}} - 2$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$e^{\frac{x}{2}} - 2$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(e^{\frac{x}{2}} - 2\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(e^{\frac{x}{2}} - 2\right)d x}}} = {\color{red}{\left(- \int{2 d x} + \int{e^{\frac{x}{2}} d x}\right)}}$$

$$$c=2$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\int{e^{\frac{x}{2}} d x} - {\color{red}{\int{2 d x}}} = \int{e^{\frac{x}{2}} d x} - {\color{red}{\left(2 x\right)}}$$

$$$u=\frac{x}{2}$$$ olsun.

Böylece $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (adımlar » görülebilir) ve $$$dx = 2 du$$$ elde ederiz.

İntegral şu hale gelir

$$- 2 x + {\color{red}{\int{e^{\frac{x}{2}} d x}}} = - 2 x + {\color{red}{\int{2 e^{u} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:

$$- 2 x + {\color{red}{\int{2 e^{u} d u}}} = - 2 x + {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$

Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:

$$- 2 x + 2 {\color{red}{\int{e^{u} d u}}} = - 2 x + 2 {\color{red}{e^{u}}}$$

Hatırlayın ki $$$u=\frac{x}{2}$$$:

$$- 2 x + 2 e^{{\color{red}{u}}} = - 2 x + 2 e^{{\color{red}{\left(\frac{x}{2}\right)}}}$$

Dolayısıyla,

$$\int{\left(e^{\frac{x}{2}} - 2\right)d x} = - 2 x + 2 e^{\frac{x}{2}}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(e^{\frac{x}{2}} - 2\right)d x} = - 2 x + 2 e^{\frac{x}{2}}+C$$

Cevap

$$$\int \left(e^{\frac{x}{2}} - 2\right)\, dx = \left(- 2 x + 2 e^{\frac{x}{2}}\right) + C$$$A


Please try a new game Rotatly