$$$\frac{16 x - 9}{x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{16 x - 9}{x}\, dx$$$.
Çözüm
Expand the expression:
$${\color{red}{\int{\frac{16 x - 9}{x} d x}}} = {\color{red}{\int{\left(16 - \frac{9}{x}\right)d x}}}$$
Her terimin integralini alın:
$${\color{red}{\int{\left(16 - \frac{9}{x}\right)d x}}} = {\color{red}{\left(\int{16 d x} - \int{\frac{9}{x} d x}\right)}}$$
$$$c=16$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$- \int{\frac{9}{x} d x} + {\color{red}{\int{16 d x}}} = - \int{\frac{9}{x} d x} + {\color{red}{\left(16 x\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=9$$$ ve $$$f{\left(x \right)} = \frac{1}{x}$$$ ile uygula:
$$16 x - {\color{red}{\int{\frac{9}{x} d x}}} = 16 x - {\color{red}{\left(9 \int{\frac{1}{x} d x}\right)}}$$
$$$\frac{1}{x}$$$'nin integrali $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$16 x - 9 {\color{red}{\int{\frac{1}{x} d x}}} = 16 x - 9 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Dolayısıyla,
$$\int{\frac{16 x - 9}{x} d x} = 16 x - 9 \ln{\left(\left|{x}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{16 x - 9}{x} d x} = 16 x - 9 \ln{\left(\left|{x}\right| \right)}+C$$
Cevap
$$$\int \frac{16 x - 9}{x}\, dx = \left(16 x - 9 \ln\left(\left|{x}\right|\right)\right) + C$$$A