$$$x$$$ değişkenine göre $$$b^{x - 1}$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int b^{x - 1}\, dx$$$.
Çözüm
$$$u=x - 1$$$ olsun.
Böylece $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (adımlar » görülebilir) ve $$$dx = du$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{b^{x - 1} d x}}} = {\color{red}{\int{b^{u} d u}}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:
$${\color{red}{\int{b^{u} d u}}} = {\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}}$$
Hatırlayın ki $$$u=x - 1$$$:
$$\frac{b^{{\color{red}{u}}}}{\ln{\left(b \right)}} = \frac{b^{{\color{red}{\left(x - 1\right)}}}}{\ln{\left(b \right)}}$$
Dolayısıyla,
$$\int{b^{x - 1} d x} = \frac{b^{x - 1}}{\ln{\left(b \right)}}$$
İntegrasyon sabitini ekleyin:
$$\int{b^{x - 1} d x} = \frac{b^{x - 1}}{\ln{\left(b \right)}}+C$$
Cevap
$$$\int b^{x - 1}\, dx = \frac{b^{x - 1}}{\ln\left(b\right)} + C$$$A