$$$x$$$ değişkenine göre $$$a^{x} - 1$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(a^{x} - 1\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(a^{x} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{a^{x} d x}\right)}}$$
$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$\int{a^{x} d x} - {\color{red}{\int{1 d x}}} = \int{a^{x} d x} - {\color{red}{x}}$$
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$$- x + {\color{red}{\int{a^{x} d x}}} = - x + {\color{red}{\frac{a^{x}}{\ln{\left(a \right)}}}}$$
Dolayısıyla,
$$\int{\left(a^{x} - 1\right)d x} = \frac{a^{x}}{\ln{\left(a \right)}} - x$$
İntegrasyon sabitini ekleyin:
$$\int{\left(a^{x} - 1\right)d x} = \frac{a^{x}}{\ln{\left(a \right)}} - x+C$$
Cevap
$$$\int \left(a^{x} - 1\right)\, dx = \left(\frac{a^{x}}{\ln\left(a\right)} - x\right) + C$$$A