$$$x$$$ değişkenine göre $$$84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int 84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=84 i n t$$$ ve $$$f{\left(x \right)} = \sin{\left(3 x \right)} \cos{\left(3 x \right)}$$$ ile uygula:
$${\color{red}{\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}}} = {\color{red}{\left(84 i n t \int{\sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}\right)}}$$
$$$u=\sin{\left(3 x \right)}$$$ olsun.
Böylece $$$du=\left(\sin{\left(3 x \right)}\right)^{\prime }dx = 3 \cos{\left(3 x \right)} dx$$$ (adımlar » görülebilir) ve $$$\cos{\left(3 x \right)} dx = \frac{du}{3}$$$ elde ederiz.
O halde,
$$84 i n t {\color{red}{\int{\sin{\left(3 x \right)} \cos{\left(3 x \right)} d x}}} = 84 i n t {\color{red}{\int{\frac{u}{3} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(u \right)} = u$$$ ile uygula:
$$84 i n t {\color{red}{\int{\frac{u}{3} d u}}} = 84 i n t {\color{red}{\left(\frac{\int{u d u}}{3}\right)}}$$
Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:
$$28 i n t {\color{red}{\int{u d u}}}=28 i n t {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=28 i n t {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
Hatırlayın ki $$$u=\sin{\left(3 x \right)}$$$:
$$14 i n t {\color{red}{u}}^{2} = 14 i n t {\color{red}{\sin{\left(3 x \right)}}}^{2}$$
Dolayısıyla,
$$\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x} = 14 i n t \sin^{2}{\left(3 x \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)} d x} = 14 i n t \sin^{2}{\left(3 x \right)}+C$$
Cevap
$$$\int 84 i n t \sin{\left(3 x \right)} \cos{\left(3 x \right)}\, dx = 14 i n t \sin^{2}{\left(3 x \right)} + C$$$A