$$$6 x \left(1 - x\right)$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$6 x \left(1 - x\right)$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 6 x \left(1 - x\right)\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=6$$$ ve $$$f{\left(x \right)} = x \left(1 - x\right)$$$ ile uygula:

$${\color{red}{\int{6 x \left(1 - x\right) d x}}} = {\color{red}{\left(6 \int{x \left(1 - x\right) d x}\right)}}$$

Expand the expression:

$$6 {\color{red}{\int{x \left(1 - x\right) d x}}} = 6 {\color{red}{\int{\left(- x^{2} + x\right)d x}}}$$

Her terimin integralini alın:

$$6 {\color{red}{\int{\left(- x^{2} + x\right)d x}}} = 6 {\color{red}{\left(\int{x d x} - \int{x^{2} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=1$$$ ile uygulayın:

$$- 6 \int{x^{2} d x} + 6 {\color{red}{\int{x d x}}}=- 6 \int{x^{2} d x} + 6 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 6 \int{x^{2} d x} + 6 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$3 x^{2} - 6 {\color{red}{\int{x^{2} d x}}}=3 x^{2} - 6 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=3 x^{2} - 6 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Dolayısıyla,

$$\int{6 x \left(1 - x\right) d x} = - 2 x^{3} + 3 x^{2}$$

Sadeleştirin:

$$\int{6 x \left(1 - x\right) d x} = x^{2} \left(3 - 2 x\right)$$

İntegrasyon sabitini ekleyin:

$$\int{6 x \left(1 - x\right) d x} = x^{2} \left(3 - 2 x\right)+C$$

Cevap

$$$\int 6 x \left(1 - x\right)\, dx = x^{2} \left(3 - 2 x\right) + C$$$A


Please try a new game Rotatly