$$$5 \sin{\left(x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int 5 \sin{\left(x \right)}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=5$$$ ve $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ ile uygula:
$${\color{red}{\int{5 \sin{\left(x \right)} d x}}} = {\color{red}{\left(5 \int{\sin{\left(x \right)} d x}\right)}}$$
Sinüsün integrali $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$5 {\color{red}{\int{\sin{\left(x \right)} d x}}} = 5 {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Dolayısıyla,
$$\int{5 \sin{\left(x \right)} d x} = - 5 \cos{\left(x \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{5 \sin{\left(x \right)} d x} = - 5 \cos{\left(x \right)}+C$$
Cevap
$$$\int 5 \sin{\left(x \right)}\, dx = - 5 \cos{\left(x \right)} + C$$$A